Bergman kernel and projection on the unbounded Diederich–Fornæss worm domain

STEVEN G. KRANTZ, MARCO M. PELOSO AND CATERINA STOPPATO

Abstract. In this paper we study the Bergman kernel and projection on the unbounded worm domain

$$\mathcal{W}_{\infty} = \left\{ (z_1, z_2) \in \mathbb{C}^2 : \left| z_1 - e^{i \log |z_2|^2} \right|^2 < 1 \text{ for } z_2 \neq 0 \right\} \,.$$

We first show that the Bergman space of \mathcal{W}_{∞} is infinite dimensional. Then we study the Bergman kernel *K* and the Bergman projection \mathcal{P} for \mathcal{W}_{∞} . We prove that K(z, w) extends holomorphically in *z* (and antiholomorphically in *w*) near each point of the boundary except for a specific subset that we study in detail. By means of an appropriate asymptotic expansion for *K*, we prove that the Bergman projection $\mathcal{P} : W^s \nleftrightarrow W^s$ if s > 0 and $\mathcal{P} : L^p \nleftrightarrow L^p$ if $p \neq 2$, where W^s and L^p denote the classic Sobolev space, and the Lebesgue space, respectively, on \mathcal{W}_{∞} .

Mathematics Subject Classification (2010): 32A25 (primary); 32A36 (secondary.